

EECS3311-W20 Software Design
SimOdyssey2 Project

By retrieving this Lab and using this document you affirm that you are registered in EECS3311-W20 at
York University this term. Registered EECS3311 students may download the Lab for their private use, but
may not communicate it to anyone else, even other students in the class. This document and any of
your work may not appear on the internet, but must be private. Students may do this Lab on their own,
or with one other member of the course. A team contains a maximum of two students (no exceptions).
Each team must submit their own work thus complying with York academic integrity guidelines. See
course wiki for details of academic integrity principles.

Table of Contents
Table of Contents ... 1
1. Project goals and Design Document .. 2
2. What you are provided with ... 2
3. SimOdyssey: The story so far… .. 4
4. What is SimOdyssey? .. 4
5. Entities (Summary) .. 7
6. High-Level Summary of the Game .. 7
7. Generation of the Board ... 8
8. How to Use the Starter Project .. 11
9. Game Being Played ... 12
10. What Happens in a Turn? .. 12
11. Entities (Detailed) .. 13
12. Grammar (Formal) ... 20
13. Abstract State: Main Messages .. 23
14. Abstract State: Command-Specific Messages ... 26
15. Abstract State: Death Messages ... 26
16. Abstract State: Error Messages .. 27
17. Appendix A. Algorithm/Randomness ... 29
18. Appendix B: Additional Debug Help - toggle_RNG_out ... 37
19. Appendix C. Revisions .. 38

2

1. Project goals and Design Document
Refer to the course wiki for details on the electronic submission of this lab, including the code and a
report.

The Project is Phase2 where you expand galactic game designed in Lab4 (Phase1).
Design is the construction of abstractions of data and computation and the organization of these
abstractions into a working software application (Introduction to Software Design with Java, M.
Robillard, 2017)
In design, the skill you wish to develop is the ability to distill a complex problem into its simplest
components, and to organize the components into a cohesive and maintainable product.
Keep in in the Project, you will need to produce a Design Document. For more on this document, see the
footnote.1

2. What you are provided with
For the project you are provided with many resources including a specification of the Project, a UI
grammar (with which you will generate an ETF project), some acceptance tests, an oracle (in place of
your customer) for writing and validating your own tests, and some starter code for board generation. See
Figure 1.
In Appendix A, you will find an algorithm (rather than code) that specifies abstractly the generation and
movement of entities in the game (which can also be inferred from the oracle). Ultimately, we will use
the oracle to assess the correctness of your design.

Note: If you merely attempt to implement the algorithm directly, without thinking about design
(information hiding, modularity, classes, their features, client-supplier/inheritance relationships,
architecture, etc.), then your code might work but your design is likely to be poor with code smells (such
as Superman classes that do too much). In your design documentation (e.g., BON class diagrams), such
direct implementation from the algorithms will not result in a passing grade.

1 http://seldoc.eecs.yorku.ca/doku.php/eiffel/sdd/start

3

Simodyssey2-Spec.pdf
 -- specification document

Simoddyssey2.definitions.txt
 -- grammar of user commands at User Interface

initial-simodyssey/
 -- starter code to generate an initial galaxy

oracle.exe
 -- this is your customer who will confirm
 -- that your own acceptance tests are valid

tests/
 -- we provide you with 3 acceptance tests
 -- you must write many more for design correctness

Figure 1 Specification Suggested workflow:

• Fix any errors from the feedback given for Lab4.
• Read carefully this specification document to understand both the background of the game (before the

Appendix) and abstract algorithms of how the game should be implemented. Note the Project adds
more types of entities to Lab4.

• While you are reading this document, you are advised to play with the oracle.exe to obtain a strong
grasp of the assignment.

• In the event there is conflicting information between the oracle and documentation, prioritize the
oracle and report the bug.

• Review the starter code which provides a way to generate the board. See section How to Use the
Starter Project for a guide on the starter code. Note that the starter code is different from the one
provided from Lab4 as there are more types of entities added.

• Incrementally code a solution by the basic acceptance tests given to you, then by your own acceptance
tests (whose expected outputs should be confirmed by the oracle). Ensure that you perform regular
regression testing.

4

3. SimOdyssey: The story so far…
The nations of Earth are in desperate need of a galaxy exploration simulator to prepare a new generation
for deep space exploration. The combined effects of the hole in the ozone layer, global warming, nuclear
catastrophes and the fear that ABBA might still reform have inspired action. At long last, our planet has
finally mounted a concerted effort not merely to find out if "anyone’s out there", but whether or not we
can join them. As such, they require a simulator to train space explorers to search different sectors of our
galaxy containing stars of the same type as our own sun. These stars, known as "Yellow Dwarfs", are
believed to hold the best hope of discovering planets that support life - at least "as we know it". The
explorer’s mission is to see if such stars have any planets orbiting them. If a planet is discovered, the
explorer can land on the planet and conduct experiments to determine if life is supportable (rock and
atmospheric sampling for oxygen, carbon or water, existence of Pizza Huts, and so on). The game is won
and the simulation ends when a planet capable of supporting life is discovered.
Having been recently trained in the art of software design, the joint nations of Earth tasked YOU with the
design and construction of the simulator.
From Lab 4 to now, it was discovered that space is a dark scary place. Many other entities also exist.
There is a need for the simulation created in Lab 4 to be updated with these new discoveries.

4. What is SimOdyssey?

1,1 1,2 1,3 1,4 1,5

2,1 2,2

2,3

2,4

2,5

3,1 3,2

3,3 3,4

3,5

4,1 4,2

4,3

4,4

4,5

5,1 5,2 5,3 5,4 5,5

Figure 2 How the Galaxy fits together

The system to be modeled and implemented is a simplified simulation of a galaxy. A two-dimensional
grid of sectors represents the galaxy. In the current game you are being asked to program, the size of the
grid is 5 by 5 so the grid will look like Figure 2. Each sector in the grid is identified by its coordinates in
terms of the row number and the column number.
For the purpose of moving the explorer, if the explorer is in any sector, it can travel to any of the 8

5

adjacent sectors normally. These are found in the north, north-east, east, south-east, south, south-west,
west, and north-west positions directly adjacent to the given sector For example, looking at sector (3,3),
we can see that (2,4) is the north-east neighbour.
The grid wraps along its boundaries meaning if we go north from a sector in the first row, we will move
into the fifth row at the bottom of the grid. For example, the north neighbour of sector (1,3) is sector (5,3).
Each sector contains four quadrants where each quadrant may contain an entity. An example of the
distribution of the entities, when the game is first started, could be as follows:

1,1 Explorer 1,2
Blue Giant

1,3
Planet

1,4 1,5
Planet
Planet

2,1 2,2 2,3
Wormhole

2,4 2,5
Planet

3,1
Malevolent
Yellow Dwarf

3,2 3,3
Black Hole

3,4
Planet
Wormhole

3,5

4,1
Wormhole

4,2
Malevolent
Blue Giant

4,3
Planet

4,4
Planet
Blue Giant

4,5

5,1
Benign
Wormhole

5,2 5,3
Blue Giant

5,4 5,5
Planet
Wormhole

A sample simulation (execution) is shown in M: Malevolent
B: Benign
P: Planet
J: Janitaur
A: Asteroid
Figure 3, where each entity has its corresponding character:

Stationary

O: Blackhole
Y: Yellow Dwarf
*: Blue Giant
W: Wormhole

Movable:

E: Explorer

M: Malevolent
B: Benign
P: Planet
J: Janitaur
A: Asteroid

6

Figure 3 Sample run
 state:0.0, ok
 Welcome! Try test(3,5,7,15,30)
->play
 state:1.0, mode:play, ok
 Movement:none
 (1:1) (1:2) (1:3) (1:4) (1:5)
 E--- *--- P--- ---- PP--
 (2:1) (2:2) (2:3) (2:4) (2:5)
 ---- ---- W--- ---- P---
 (3:1) (3:2) (3:3) (3:4) (3:5)
 MY-- ---- O--- PW-- ----
 (4:1) (4:2) (4:3) (4:4) (4:5)
 W--- M*-- P--- P*-- ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 BW-- ---- *--- ---- PW--
->pass
 state:2.0, mode:play, ok
 Movement:
 [3,P]:[1,5,2]->[5,4,1]
 [8,P]:[4,3,1]->[3,2,1]
 (1:1) (1:2) (1:3) (1:4) (1:5)
 E--- *--- P--- ---- P---
 (2:1) (2:2) (2:3) (2:4) (2:5)
 ---- ---- W--- ---- P---
 (3:1) (3:2) (3:3) (3:4) (3:5)
 MY-- P--- O--- PW-- ----
 (4:1) (4:2) (4:3) (4:4) (4:5)
 W--- M*-- ---- P*-- ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 BW-- ---- *--- P--- PW--
-- pass 15 times
->move(S)
 state:18.0, mode:play, ok
 Movement:
 [0,E]:[1,1,1]->[2,1,1]
 [4,P]:[3,2,1]->[4,1,2]
 [16,B]:[2,3,2]->[5,1,1]
 reproduced [24,B] at [5,1,3]
 [17,M]:[4,5,1]->[3,1,1]
 [22,B]:[2,3,3]->[4,1,3]
 reproduced [25,B] at [4,1,4]
 [23,M]:[4,5,2]->[5,1,4]
 (1:1) (1:2) (1:3) (1:4) (1:5)
 -BB- *P-- ---- ---- ----
 (2:1) (2:2) (2:3) (2:4) (2:5)
 E--- BB-- W--- ---- ----
 (3:1) (3:2) (3:3) (3:4) (3:5)
 MYP- ---- O--- -W-- ----
 (4:1) (4:2) (4:3) (4:4) (4:5)
 WPBB -*-- ---- P*PP ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 BWBM ---- *P-- P--- -W--
->move(S)
 state:19.0, mode:play, ok
 Movement:
 [0,E]:[2,1,1]->[3,1,4]
 [3,P]:[5,4,1]->[1,5,1]
 [14,B]:[2,2,1]
 reproduced [26,B] at [2,2,3]
 [20,B]:[2,2,2]->[2,3,2]
 reproduced [27,B] at [2,3,3]
 [24,B]:[5,1,3]->[4,3,1]
 (1:1) (1:2) (1:3) (1:4) (1:5)
 -BB- *P-- ---- ---- P---
 (2:1) (2:2) (2:3) (2:4) (2:5)
 ---- B-B- WBB- ---- ----
 (3:1) (3:2) (3:3) (3:4) (3:5)

7

 MYPE ---- O--- -W-- ----
 (4:1) (4:2) (4:3) (4:4) (4:5)
 WPBB -*-- B--- P*PP ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 BW-M ---- *P-- ---- -W--
->land
 state:20.0, mode:play, ok
 Tranquility base here - we've got a life!

5. Entities (Summary)
Space (in the simulations) is inhabited by a variety of entities that have different behaviours. There are
two main types of entities. They are:
Movable entities - which move throughout the galaxy interacting with other entities.

• Asteroid, benign, planet, malevolent and janitaur.

• The explorer - which is a unique movable entity controlled by the user.

Stationary entities - which stay in one place throughout the game.

• Wormhole, blackhole, blue giant and yellow dwarf (where blue giant and yellow dwarf are
considered to also be a star object).

We repeat below the code for each entity:
Stationary

O: Blackhole
Y: Yellow Dwarf
*: Blue Giant
W: Wormhole

Movable:

E: Explorer

M: Malevolent
B: Benign
P: Planet
J: Janitaur
A: Asteroid

6. High-Level Summary of the Game
The SimOdyssey game can be started in two different modes:

• In test mode, more information is provided regarding the board, and the type and amount of
entities created at the beginning can be influenced (e.g., test(1,1,1,1,90) has a higher probability of
generating more planets compared with test(20,20,20,20,20) which generates no planets, only a
few asteroids).

• In play mode, there is less information and the initial density of entities cannot be influenced.
Both modes use a deterministic “random” number generator: i.e., the generated sequence of numbers is

8

always the same, but changes from play to play based on the same random seed. After starting a new
game, a 5-by-5 board is generated. Other than (1,1) which has the explorer and (3,3) which contains a
black hole, the other entities are generated and placed at “random” positions on the board. Each sector has
4 quadrants and thus at most 4 entities (one per quadrant). So, for example, a sector may have PWE-
meaning a Planet, a Wormhole and an Explorer.
After the generation of the board, commands can be issued to control the behavior of the explorer. Some
of the commands will constitute as a turn (such as moving the explorer) which will subsequently cause
some of the other movable entities to make their move. Other commands (such as checking the status)
will not modify the board. The game is continued until either the explorer’s life runs out, the explorer’s
fuel runs out, a planet with life is found, or the game is aborted. A new game can be started when the
game is over.

7. Generation of the Board
This section contains a detailed version of how the board is generated. A more precise abstract algorithm
for generating the board is included in Appendix A.
For the purpose of this game, the board size is 5 by 5. It is imperative to use the random numbers
generated in the exact manner as this document describes it, or your output will not match the
oracle used to test your code. Sample starter code is provided that does this and contains the random
number generator you must use.
An example of the board generation is provided in the starter code that may be used in your final solution,
although it will have to be refactored for good design.
Note that the starter code has a line in {SECTOR}.populate

turn := gen.rchoose(0, 2)

where the value of turn should be used for setting the number of turns left for that entity to behave (when
creating a new movable entity).
Initially, each of the sectors of the board (galaxy) is created, starting from the leftmost to the rightmost
column row-by-row (where the smallest rows are generated first). In other words, the sectors will be
generated in the order of (1,1), (1,2) … (1,5), (2,1), (2,2) … (2,5), (3,1) and etc. The order is important as
there is randomness involved. Each sector can contain up to 4 entities.
When a sector is generated, a number from 1 .. 3 is first randomly generated, denoting the maximum
number of movable entities generated in that sector (excluding the explorer).
Note that for sector (3,3), no random number generation is required. A black hole is created at that sector.
For sector (1,1), an explorer is placed at the first quadrant before any generation is done.
The number generator then generates a number from 1 to 100 (called a threshold). If in play mode:

• If the number is 1 to 2, an asteroid is generated.

• 3 to 4 is janitaur.

• 5 to 6 is malevolent.

• 7 to 14 is benign.

9

• 15 to 29 is planet.

• 30 to 100 will not generate anything.
If in test mode, the specification of 5 numbers which determine the threshold, is required:

 test (
 asteroid_threshold: THRESHOLD;
 janitaur_threshold: THRESHOLD;
 malevolent_threshold: THRESHOLD;
 benign_threshold: THRESHOLD;
 planet_threshold: THRESHOLD

)

(as defined in the UI grammar file). The user command play is equivalent to test(3,5,7,15,30). Thus if
n is the random number generated:

• if 0 < n < asteroid_threshold, then an asteroid is generated.

• if asteroid_threshold <= n < janitaur_threshold, then a janitaur is generated.

• if janitaur_threshold <= n < malevolent_threshold, then a malevolent is generated.

• if malevolent_threshold <= n < benign_threshold, then a benign is generated.

• if benign_threshold <= n < planet_threshold, then a planet is generated.

• if planet_threshold <= n < 101, then nothing generated.

The numbers for specifying the thresholds should be equivalent or increasing and bounded between 1-
101, e.g., invoking test(3, 15, 5, 7, 30) should trigger an error. Test mode essentially allows the control of
distribution of types and somewhat the amount for movable entities as seen in Figure 4.

10

Figure 4 Sample generation of the board via threshold

->test(1,1,1,1,1)...
 (1:1) (1:2) (1:3) (1:4) (1:5)
 EY-- ---- ---- ---- ----
 (2:1) (2:2) (2:3) (2:4) (2:5)
 ---- W--- W--- W--- ----
 (3:1) (3:2) (3:3) (3:4) (3:5)
 Y--- ---- O--- ---- ----
 (4:1) (4:2) (4:3) (4:4) (4:5)
 W--- Y--- ---- *--- ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 W--- ---- ---- Y--- ----
->abort...
->test(1,1,1,1,101)...
 (1:1) (1:2) (1:3) (1:4) (1:5)
 EPPP PPP- PPY- PPY- PP*-
 (2:1) (2:2) (2:3) (2:4) (2:5)
 P*-- P--- PY-- PPPY PPPW
 (3:1) (3:2) (3:3) (3:4) (3:5)
 PP-- PPP- O--- PPPY PW--
 (4:1) (4:2) (4:3) (4:4) (4:5)
 PPP- PPP- PP-- PPP- P---
 (5:1) (5:2) (5:3) (5:4) (5:5)
 P--- P--- P*-- PP-- PP--
->abort ...
->test(1,1,1,50,100)...
 (1:1) (1:2) (1:3) (1:4) (1:5)
 EB-- PBB- B*-- B--- BP--
 (2:1) (2:2) (2:3) (2:4) (2:5)
 BW-- B--- BY-- PPB- BP--
 (3:1) (3:2) (3:3) (3:4) (3:5)
 P--- B--- O--- PBW- PP*-
 (4:1) (4:2) (4:3) (4:4) (4:5)
 PPPY BP*- PBP- PY-- B---
 (5:1) (5:2) (5:3) (5:4) (5:5)
 B--- BP-- BPBY PPP- BY--

As documented in the grammar, the command test in the above table has an argument that allows the
software developer to create different initial distributions of movable entities on the board for testing the
application (see Figure 5).
Figure 5 UI grammar for test parameter

test(
 asteroid_threshold: THRESHOLD;
 janitaur_threshold: THRESHOLD;
 malevolent_threshold: THRESHOLD;
 benign_threshold: THRESHOLD;
 planet_threshold: THRESHOLD
)

type THRESHOLD = 1..101

11

For example, test(1,1,1,1,1) creates an initial distribution of entities on the board in which there are no
movable entities, only stationary ones, other than the explorer at sector (1,1).
test(1,1,1,1,101) results in every movable entities being generated is a planet. test(1,1,1,50,100) gives a
board with relatively the same density of the movable entities as the previous test command, but the
movable entities are shared between benigns and planets.
Another example is test(1,1,1,54,101) which means that a number generated from 1-53 creates a benign
and 54-100 creates a planet. When each movable entity listed above is generated, also generate a number
from 0-2 to represent its next turn.
The stationary entities are then created. 10 stationary entities will be created excluding the blackhole. The
creation process works by generating a row number and then a column number. If that sector does not
contain a stationary entity and the sector is not full, then a stationary entity will be created. To determine
which stationary object is being created, a random number is generated from between 1 and 3: 1 is a
yellow dwarf, 2 is a blue giant and 3 is a wormhole. If the sector contains a stationary entity, new row
numbers and column numbers will be generated. The process continues until 10 stationary entities have
been created.
An important note is that when each entity is created, a unique id is assigned to it. The id is very
important in terms of breaking ties when several movable entities are scheduled to move in the same turn
and to keep track of attributes of each entity on the board. The explorer has an id of 0 while the blackhole
has an id of -1. Movable entities are assigned the id of 1 and increasing based on the order of creation,
whereas stationary entities are assigned the id of -2 and decreasing based on the order of creation.

8. How to Use the Starter Project
The main goal of the starter code is to provide a way for creating new game boards, including the
placement of the entities. We again stress that this code should be refactored for good design.
You must use the provided classes RANDOM_GENERATOR and RANDOM_GENERATOR_ACCESS in your submission
so that your output will match the output of the oracle. These classes implement the singleton pattern to
prevent issues arising from different instances of the generator. You do not have to use other provided
classes. If you compile and run the starter code, you will see a printout of the game board with various
entities placed in different sectors. Here are the classes in the starter project:

• In the ROOT class, we first modify the threshold values. A GALAXY object is created (which uses
threshold values) and then printed.

o {GALAXY}.make invokes the random number generator, meaning that you should only invoke
the make command when there is a need (i.e., test and play).

o Therefore, when you consider adapting the starter code to your ETF project, you should not
invoke {GALAXY}.make in {ETF_MODEL}.make and {ETF_MODEL}.reset, because those two
commands may not be triggered by test or play. Again, we do not require you to use class
GALAXY in your design; it is only classes RANDOM_GENERATOR and RANDOM_GENERATOR_ACCESS
that are required.

• GALAXY owns all of the SECTOR objects, and is responsible for the creation of them, as well as
placing the stationary entities (i.e. Yellow Giants, Blue Dwarf, etc.) into a random SECTOR. Key
features include:

12

o make which first create a grid of SECTOR populated with movable entities, the explorer and
blackhole. (Please take note of a line in the SECTOR populate feature, where the generator is
called to initialize the next turn of the entity. It is not used for anything here, but you need
it when you actually create the entity rather than the ENTITY_ALPHABET.) At the end, 10
stationary entities are added to random sectors.

o out which provide an ASCII output of the abstract state.

• ENTITY_ALPHABET provides a way to abstract of each of the entities in the game for the output in the
starter code, leaving you to figure out the proper implementation themselves.

• SHARED_INFORMATION is a singleton that keeps track of the values that the starter code uses to
generate the board (threshold value, board size). This is useful because it upholds the single-choice
principle of software design, since the program has a single source to point to and look for certain
information, e.g. how many rows should there be on the board.

• RANDOM_GENERATOR_ACCESS has a feature called rchoose which lets you generate a number in a
specified range. More on this feature in the appendix.

9. Game Being Played
After the board has been created, many commands become “available” for the player to use. Commands
can be split into two types: valid command uses and invalid command uses. The valid command usage
can be further split into two types: commands when validly used, constitute a turn, and commands that
don’t.
Commands not constituting a turn like status do not modify the board state, with the exception of play and
test (which set the initial state of the board). In general, valid commands that constitute a turn, as well as
valid play and valid test commands, cause the output to give information about the board and the game,
whereas the rest of the commands, including invalid uses, cause the output to give information about the
game (but not the board). See section Abstract State: Main Messages (and the subsequent sections) for
more information about the board and game information to display.
For commands that causes a turn to go when validly used (move, wormhole, land, liftoff, pass), see section
What Happens in a Turn.
The explorer initially starts at (1,1), has a life of 3 and fuel of 3 (the maximum amount). Fuel decrease by
1 each time the explorer uses the move command successfully. Fuel is gained when in a sector with a star
based on the star’s luminosity intensity. Life is lost based on interactions with other entities and cannot be
gained.
The game is over when

• a planet with life is found,
• the explorer runs out of fuel or life,
• or the user issues an abort command. A new game (with a different initial state) can then be

started.

10. What Happens in a Turn?
The commands move, wormhole, land, liftoff and pass are commands that will cause a turn to occur when
valid. The commands are considered valid when a game is in play (and not over) and:

13

• for move, the new sector to travel to is adjacent and not full

• for wormhole, a wormhole exists at the current sector of the explorer

• for land, a planet is attached to a yellow dwarf at the current sector of the explorer that has yet to
be landed on (and the explorer is currently not landed on a planet)

• for liftoff, the explorer to be landed on a planet attached to a yellow dwarf, but contains no life.

The order of a turn consists of the following:

• Explorer acts; then explorer consumes 1 unit of fuel when it uses a “move” command, whereas
the rest of the commands (that causes a turn to occur when valid) do not consume any fuel.

• Fuel is added to the explorer if it is in a sector with a star (where the fuel gain is based on the
star’s luminosity).

• If explorer fuel ≤ 0 or the explorer is in sector (3,3), the explorer dies (removed from the board),
but the turn continues (i.e. other entities act) before the game ends.

• The other movable entities then act (i.e. planets).

o Other movable entities act based on id and a variable turns_left.
o In the order from the lowest id, a movable entity’s turns_left is decreased by 1. When it hits

0, that movable entity is enabled to act for that turn. See section Entities (Detailed) below
to see how each type of entities interacts with each other.

o After the entity's action, if they are still alive, a number is again generated between 0..2,
again signifying the next turn.

For output, when the commands are invalid, a message indicating that is output (and a turn will not
occur). When the command is valid, it depends on if the command causes a turn (and if it is play or test)
or if the command does not cause a turn. For the latter, only a message is output. For the former, a
message is potentially outputted along with entity movements and the board. If the game is in test mode,
additional information such as mapping of sectors to entities, entities deaths and entities stats.

11. Entities (Detailed)
For a summary of constant and variable attributes of each entity of the game, see Table 1 and Table 2.

14

SUMMARY OF ENTITIES AND FIELDS
Table 1: Variable fields in entities.

Icon:
CHAR

fuel:
INTE
GER

life:
INTEG

ER

load :
INTEGER

actions_
left_until_

reproduction:
INTEGER

attached?:
BOOLEAN

support_
life?:

BOOLEAN

visited?:
BOOLEAN

landed?:
BOOLEAN

turns_left:
INTEGER

death_message:
STRING

O
W
*
Y
E ✓ ✓ ✓ ✓
B ✓ ✓ ✓ ✓
M ✓ ✓ ✓ ✓
J ✓ ✓ ✓ ✓ ✓
A ✓ ✓
P ✓ ✓ ✓ ✓ ✓

Table 2: Constant fields in entities.

Icon:
CHAR

ID:
INTEGER

Luminosity:
INTEGER

Max_Load:
INTEGER

Max_Fuel:
INTEGER

Reproduction_
Interval:
INTEGER

O -1
W neg
* neg 5
Y neg 2
E 0 3
B pos 3 1
M pos 3 1
J pos 2 5 2
A pos
P pos

15

EXPLORER
The explorer travels the galaxy searching for a planet capable of supporting life. An explorer has the
following behavior:

• It is a movable entity.
• The explorer gets to choose which action to perform when
activation occurs. Please refer to Grammar section.
• Has maximum fuel of 3 which decreases by 1 each time it
moves. It can also take a wormhole, pass, land or liftoff which
does not consume any fuel. Fuel is recharged by moving into a
sector with a star where it gains fuel equivalent to the star’s
luminosity value.
• Has a life value of three, which is reduced by one each time
when attacked by a malevolent and reduced to zero when running
out of fuel, entering a region with a black hole and being hit by an
asteroid).
• A life or fuel value of zero ends the game.
• Represented by the character ‘E’.

 Error! Not a valid
embedded object.

BENIGN
Benign patrol the universe, culling the ever-growing evil that is known as malevolent.
When activated, benign attacks and instantly destroys all malevolent found in the same sector. They also
protect the explorer from being attacked by malevolent if they are in the same sector with the benign. A
benign has the following behaviour:

• It is a movable entity.
• Max fuel of 3.
• It is destroyed when fuel runs out.
• Can also be destroyed by a blackhole, and asteroid.
• Has a reproduction_interval of one (so at best, clones itself

every 2 times it acts)
• Represented by the character ‘B’.

MOVEMENT
• It will prioritize taking a wormhole if a wormhole exists in

the current sector; otherwise it will move to a randomly
selected neighbouring sector.

CHECK
• Moving successfully uses 1 fuel, while using wormhole does

not cost any fuel.
• Fuel is gained based on star luminosity in current sector.
• Fuel of 0 means death.
• If in sector (3,3), it dies by blackhole.

16

REPRODUCTION
• In the new sector, it tries to clone itself (create a new copy) if

its reproduce is 0 and the current sector is not already full,
resetting reproduce to reproduction_interval if done
successfully. Otherwise reproduce = reproduce – 1 until
reproduce is 0.

BEHAVE
• It will destroy all malevolent in the current sector in the order

from lowest to highest id.
• Reset turns_left 0-2.

MALEVOLENT
A malevolent is a darker side of evolved extra-terrestrial life. Very territorial and hostile to evolving space
explorers. If a malevolent is in the same sector as an explorer, it will attack the explorer without fail.
Owing to congenital incompetence and suspicious armament contrentities, strikes by malevolent against
the explorer are never singularly catastrophic, requiring three direct hits to completely destroy the
explorer. A malevolent has the following behaviour:

• It is a movable entity.
• Max fuel of 3.
• It is destroyed when fuel runs out.
• Can also be destroyed by blackhole, asteroid and benign.
• Has a reproduction_interval of one (so at best, clones itself

every 2 times it acts).
• Represented by the character ‘M’.

MOVEMENT
• It will prioritize taking a wormhole if a wormhole exist in the

current sector otherwise it will move to a randomly selected
neighbouring sector.

CHECK
• Moving successfully uses 1 fuel, while using wormhole does

not cost any fuel.
• Fuel is gained based on star luminosity in current sector.
• Fuel of 0 means death.
• If in sector (3,3,), it dies by blackhole.

REPRODUCTION
• In the new sector, it tries to clone itself (create a new copy) if

its reproduce is 0 and the current sector is not already full,
resetting reproduce to reproduction_interval if done
successfully. Otherwise reproduce = reproduce – 1 until
reproduce is 0.

17

BEHAVE
• Then in the absence of a benign the given sector, looks for

explorer to attack. (Explorer cannot be attacked if it is
landed).

• Reset turns_left 0-2.

JANITAUR
Custodians of the Galactic Cleansing Rights since way back, the janitaurs are a daredevil, funtime and
unpleasant smelling bunch out on search and destroy missions looking for space debris such as asteroid to
implode, compact and haul away in the vast holds that make up most of a janitaur’s spaceship. janitaur
have no interest in who is doing what to whom and hence ignore, and are ignored by, malevolents. The
dangers to janitaur are the blackholes, which similarly threaten everything, and asteroid– in spite of their
professionalism, janitaur can also get hit (depending on turn order). A Janitaur has the following
behaviour:

• It is a movable entity.
• Max fuel of 5.
• It is destroyed when fuel runs out.
• Can also be destroyed by blackhole and asteroid.
• Has a reproduction_interval of two (so at best, clones itself

every 3 times it acts).
• Has a maximum_load_level of two.
• Represented by the character ‘J’.

MOVEMENT
• It first moves to a randomly selected neighbouring sector.

CHECK
• Moving successfully uses 1 fuel.
• Fuel is gained based on star luminosity in current sector.
• Fuel of 0 means death.
• If in sector (3,3), it dies by blackhole.

REPRODUCTION
• In the new sector, it tries to clone itself (create a new copy) if

its reproduce is 0 and the current sector is not already full,
resetting reproduce to reproduction_interval if done
successfully. Otherwise reproduce = reproduce – 1 until
reproduce is 0.

BEHAVE
• Unless its maximum_load_level has been reached, looks for

asteroids to implode and haul away (where it destroys all the
asteroids in that sector and incrementing the load level by the

18

number of asteroids destroyed). If there are multiple asteroids
and not enough room in the janitaur, lower id asteroids are
targeted first.

• If a wormhole is in the current sector, it will then throw all
the asteroids into it, clearing the load level. Note the asteroids
thrown into the wormhole do not appear anywhere.

• Reset turns_left 0-2.

ASTEROID
Asteroids are movable and will destroy any other movable entity sharing the same sector except a planet
and other asteroids. An asteroid has the following behaviour:

• It is a movable entity.
• Is destroyed if imploded by a janitaur or a blackhole

consumes it.
• Is represented by the character ‘A’.

MOVEMENT
• It first moves to a randomly selected neighbouring sector.

CHECK
• If in sector (3,3), it dies by blackhole.

BEHAVE
• Seeks any other movable entities in its sector except planets

and other asteroids and destroys all of them in ascending id
order. (Note that explorer cannot be hit if it is landed).

• Reset turns_left 0-2.

PLANET
Planet is a movable entity. Planets initially have no sign of life associated with them and move to sectors
looking for stars. If a star is found in a sector the planet will remain in "orbit" in that sector. If the star is a
yellow dwarf the planet has a 50 percent chance of developing a life supporting capability. A planet has
the following behaviour:

• It is a movable entity
• Is destroyed if a blackhole consumes it
• Is represented by the character ‘P’.

MOVEMENT
• It first moves to a randomly selected neighbouring sector
(unless it is already in a sector with a star initially, then it does
not move)

19

CHECK
• If in sector (3,3), it dies

BEHAVE
• If the sector contains a star, the planet remains in that sector
(and becomes attached).
• If a planet shares a sector with a yellow dwarf, the planet has
a 50% chance to support life
• If planet is not attached, then reset turns_left 0-2.

WORMHOLE
A wormhole is a stationary entity. The explorer, if in a sector where there is a wormhole, can use the
wormhole to exit that sector and travel to a random sector. A wormhole has the following behaviour:

• It is a stationary entity.
• It can take the explorer to a random sector.
• It is represented by the character ‘W’.

BLACKHOLE
 A super-dense entity that absorbs everything in its sector. Needless to say, a sector that contains a
blackhole contains nothing else. A blackhole has the following behaviour:

• It devours any entity in its sector.
• Is represented by the character ‘O’.

STAR
Stars are special type of stationary entities. Each type of starts has a luminosity intensity, which
determines how effectively they can re-power space vehicles. Possible stars include:

YELLOW_DWARF
A yellow dwarf is a star like our sun. It can have multiple "orbiting" planets, which can sustain life, but
only after the planet has gone into the yellow dwarf’s orbit. A yellow dwarf has the following behaviour:

20

• It is a star
• It has a luminosity of two.
• Is represented by the character ‘Y’.

BLUE_GIANT
A blue giant is a super luminous star– just the thing for recharging those flagging solar fuel cells. A blue giant can
have planets in orbit. A blue giant has the following behaviour:

• It is a star
• It has a luminosity of five.
• Is represented by the character ‘*’.

12. Grammar (Formal)
Based on the previous descriptions of the game and entities, the following grammar of types and events
will be used to generate a starter ETF project for you to implement:

system simodyssey2

-- SimOdyssey Project specifications:

 -- The game is played in test mode using a random generator
 -- with a deterministically generated seed.
 -- (The normal game that is not being implemented in this project
 -- uses a random generator with a non-deterministically
 -- generated seed).

 -- The system consists of a two-dimensional grid of sectors.
 -- Entities are randomly allocated to sectors in the grid,
 -- except for the explorer and blackhole

 -- Movable entities can move through the GALAXY and interact
 -- with other entities.
 -- Stationary entities stay in one place and
 -- interact with the movable entities.
 -- The explorer is a movable entity controlled by the user.

 -- Upon each valid command that constitute a turn
 -- the system shall output the current abstract state of the game
 -- (and also a table representation of the galaxy).

 -- Invalid commands give error messages.

 -- Queries shall display results only, not the system state.

21

 -- IMPORTANT: Read the provided documentation for more details of system behavior.

-- SimOdyssey System Types

type DIRECTION = {N, NE, E, SE, S, SW, W, NW}
 --movement directions

type THRESHOLD = 1..101
 --values for specifying thresholds in test mode

-- SimOdyssey User Commands

test(a_threshold:THRESHOLD ;
 j_threshold:THRESHOLD; m_threshold:THRESHOLD;
 b_threshold:THRESHOLD ; p_threshold:THRESHOLD)
 -- Starts a new game in test mode provided game
 -- has not been started yet or is over.
 -- Test mode uses a deterministic random generator and displays
 -- the abstract state of the game.
 -- Allows the setting of threshold values to populate the board initially
 -- (between 1 and 101 non-decreasing), e.g
 -- a_threshold: 20, i.e. generate Asteroids for 1..19
 -- j_threshold: 40, i.e. generate Janitaurs for 20..39
 -- m_threshold: 50, i.e. generate Malevolents for 40..49
 -- b_threshold: 60, i.e. generate Benigns for 50..59
 -- p_threshold: 70, i.e. generate Planets for 60..69
 -- a random number of 70 to 100 generates no moveable entities
 -- If the random number generated a number from 1 to 100,
 -- if the number is in the interval from 1 (inclusive)
 -- to the first number (exclusive), an asteroid
 -- is created, first number (inclusive) to second
 -- number (exclusive) is janitaur, second number (inclusive)
 -- to third number (exclusive) is malevolent, third number
 -- (inclusive) to fourth number (exclusive) is
 -- benign, fourth number (inclusive) to the
 -- fifth number (exclusive) is planet and fifth number
 -- (inclusive) to 101 (exclusive) is nothing.
 -- Note that this command will not cause a turn to pass/occur.

play
 -- Starts a new game using test(3,5,7,15,30)
 -- provided a game has not been started yet or is over.
 -- Play mode displays only the board and key messages as outputs
 -- and not the complete abstract state.

abort
 -- Ends the game prematurely. Only valid when game is
 -- in progress.

move (dir: DIRECTION)
 -- Moves the explorer in a given direction.

22

 -- A game has to be in progress and the sector
 -- to travel to is not full.
 -- Note that this command will cause a turn to pass/occur.
 -- After the explorer moves, other moveable entities whose clock
 -- time (rest) is zero also act in id order, i.e. 1, 2, ..
 -- In test mode: displays entity actions, abstract state,
 -- then board.

land
 -- Lands the explorer on a planet to check for life on planet.
 -- A game has to be in progress, the explorer is not already
 -- landed and there must be a planet with a yellow dwarf in the
 -- current sector where that planet has not been landed on yet.
 -- If there are multiple planets in this sector, land on the one
 -- that has not been landed on yet with the lowest id.
 -- Note that this command will cause a turn to pass/occur.
 -- Asteroid and Malevolent cannot affect the explorer
 -- when it is landed.
 -- After the explorer land, other moveable entities whose clock
 -- time (rest) is zero also act in id order, i.e. 1, 2, ..
 -- In test mode: displays entity actions, abstract state,
 -- then board.

liftoff
 -- Lifts the explorer off a planet.
 -- A game has to be in progress and the explorer is landed
 -- on a planet which also has a yellow dwarf in the same
 -- sector that cannot support life.
 -- The explorer remains in its quadrant, but can now move.
 -- Note that this command will cause a turn to pass/occur.
 -- After the explorer liftoff, other moveable entities whose clock
 -- time (rest) is zero also act in id order, i.e. 1, 2, ..
 -- In test mode: displays entity actions, abstract state,
 -- then board.

pass
 -- Lets the explorer pass a turn.
 -- Note that this command will cause a turn to pass/occur
 -- and other entities can affect the explorer.
 -- After the explorer pass, other moveable entities whose clock
 -- time (rest) is zero also act in id order, i.e. 1, 2, ..
 -- In test mode: displays entity actions, abstract state,
 -- then board.

wormhole
 -- Tunnels the explorer to a random sector (first open quadrant).
 -- A game has to be in progress and there must be
 -- a wormhole in the current sector.
 -- Note that this command will cause a turn to pass/occur
 -- and other entities can affect the explorer.
 -- After the explorer wormholes, other moveable entities whose
 -- clock time (rest) is zero also act in id order, i.e. 1, 2, ..
 -- In test mode: displays entity actions, abstract state,
 -- then board.

23

-- SimOdyssey Queries

status
 -- Displays explorer's energy, life and sector.
 -- Note that this command does not cause a turn to pass/occur

13. Abstract State: Main Messages
This section defines what the (abstract) state of a SimOdyssey game. Users interact with your program by
entering commands (e.g., move(SE), status, abort). As long as an input command conforms to the syntax
(specified in the file simodyssey.definitions.txt), the state changes. Different states will have different
output. For example, consider the following abstract state resulted from executing the command
move(SE):
...
->move(SE)
 state:3.0, mode:test, ok
 Explorer got devoured by blackhole (id: -1) at Sector:3:3
 The game has ended. You can start a new game.
 Movement:
 [0,E]:[2,2,2]->[3,3,2]
 [3,J]:[3,2,1]->[4,1,2]
 [7,P]:[4,5,1]->[5,4,1]
 [8,M]:[5,2,1]->[1,1,1]
 Sectors:
 [1,1]->[8,M],-,-,-
 [1,2]->[-9,*],-,-,-
 [1,3]->[1,B],-,-,-
 [1,4]->-,-,-,-
 [1,5]->-,-,-,-
 [2,1]->-,-,-,-
 [2,2]->-,-,-,-
 [2,3]->[-6,W],-,-,-
 [2,4]->[-2,W],-,-,-
 [2,5]->-,-,-,-
 [3,1]->[2,P],[-7,Y],-,-
 [3,2]->-,-,-,-
 [3,3]->[-1,O],-,-,-
 [3,4]->[6,B],-,-,-
 [3,5]->[4,P],-,-,-
 [4,1]->[-3,W],[3,J],-,-
 [4,2]->[-8,*],-,-,-
 [4,3]->[5,J],-,-,-
 [4,4]->-,[-5,*],-,-
 [4,5]->-,-,-,-
 [5,1]->[-4,W],-,-,-
 [5,2]->-,-,-,-
 [5,3]->[-11,*],-,-,-
 [5,4]->[7,P],-,-,-
 [5,5]->[-10,W],-,-,-
 Descriptions:
 [-11,*]->Luminosity:5

24

 [-10,W]->
 [-9,*]->Luminosity:5
 [-8,*]->Luminosity:5
 [-7,Y]->Luminosity:2
 [-6,W]->
 [-5,*]->Luminosity:5
 [-4,W]->
 [-3,W]->
 [-2,W]->
 [-1,O]->
 [1,B]->fuel:2/3, actions_left_until_reproduction:0/1, turns_left:1
 [2,P]->attached?:F, support_life?:F, visited?:F, turns_left:0
 [3,J]->fuel:4/5, load:0/2, actions_left_until_reproduction:1/2, turns_left:2
 [4,P]->attached?:F, support_life?:F, visited?:F, turns_left:0
 [5,J]->fuel:5/5, load:0/2, actions_left_until_reproduction:2/2, turns_left:0
 [6,B]->fuel:2/3, actions_left_until_reproduction:0/1, turns_left:1
 [7,P]->attached?:F, support_life?:F, visited?:F, turns_left:2
 [8,M]->fuel:2/3, actions_left_until_reproduction:0/1, turns_left:1
 Deaths This Turn:
 [0,E]->fuel:1/3, life:0/3, landed?:F,
 Explorer got devoured by blackhole (id: -1) at Sector:3:3
 (1:1) (1:2) (1:3) (1:4) (1:5)
 M--- *--- B--- ---- ----
 (2:1) (2:2) (2:3) (2:4) (2:5)
 ---- ---- W--- W--- ----
 (3:1) (3:2) (3:3) (3:4) (3:5)
 PY-- ---- O--- B--- P---
 (4:1) (4:2) (4:3) (4:4) (4:5)
 WJ-- *--- J--- -*-- ----
 (5:1) (5:2) (5:3) (5:4) (5:5)
 W--- ---- *--- P--- W---
 Explorer got devoured by blackhole (id: -1) at Sector:3:3
 The game has ended. You can start a new game.

The above example illustrates different parts of an abstract state of SimOdyssey:

• The first line state:3.0, mode:test, ok will always be displayed.
o The state has two number separated by a “.” and starts at 0.0.

§ The first number is incremented (by one) after executing a valid command that
constitutes a turn (e.g., move, land), or after a valid play or test command. These
commands also set the second number to 0.

§ Otherwise, if it is not a command that constitutes a turn (e.g., abort, status), or it is
an invalid command, then the second number is incremented by 1.

o The first line also contains, if in a game, what mode it is in (“test” or “play”).
o There is also indication (“ok” or “error”) of validity of the command.

• The next line Explorer got devoured by blackhole (id: -1) at Sector:3:3 is an example of an
optional message. This message depends on the command executed:

o Invalid command use will cause an error message to be displayed (see section Abstract
State: Error Messages).

o Valid status command will provide information on the explorer including whether it is
landed or not. Message will also be displayed for abort, landing, liftoff, and winning. See
section Abstract State: Command-Specific Messages.

o Messages will also be displayed in the event of an explorer’s death; an explorer can die by

25

running out of fuel, or life. See section Abstract State: Death Messages for more
information

• The next line “Movement” appears in both play and test mode when a valid turn has occurred (and
when a valid play and test command has occurred).

o It shows, in order of activation on that turn, the movement of entities including the
explorer. The format of the coordinates is in the form of row, column and quadrant. Note
the case where the entity was not able to move due to the sector being full. Essentially, it
shows the before and after position of the entity after it acts with the exception of the
planet special case (ignoring the fact whether it died or not). If the position does not
change (same sector and quadrant), only its initial (and equivalently its final) position is
displayed.

o
o Below each of the movement, there are a possibility of up to 3 messages (ordered by when

they occurred), reproduction, destroying another entity and attacking an entity (malevolent
exclusive). Note the message is still “attack” for a malevolent managing to destroy the
explorer.

• Following the “Movement”, only appearing in test mode when a valid turn has occurred (and
when a valid play and test command has occurred), are the sections called “Sectors”,
“Descriptions” and “Deaths This Turn”.

o The section “Sectors” shows all the sectors with all the entities inside each sector.
o In the “Descriptions” section, organized from lowest to highest id, the state of all alive

entities (at the end of the turn). A next turn of 0 means it will activate on the next turn.
o Following that, the “Deaths This Turn” section displays the state of all entities that died

that turn in the order of they died in. Note that different entities can die by various means
as specified in the Entities (Detailed) section and each method of dying has a different
message. See section Abstract State: Death Messages for more information.

• The next piece of information appears in both play and test mode when a valid turn has occurred
(and when a valid play and test command has occurred) which is the board, in an ASCII
representation.

• Only in test mode, following the board is a potential death message from the explorer same as the
one in the optional second line to notify the event of a loss. This is also where the game over
message would reside.

26

14. Abstract State: Command-Specific Messages
Below are different messages that may occur when using different commands and they are valid:

Initial Message:
1.
“Welcome! Try test(3,5,7,15,30)”

status:
1. (Where explorer is not landed.)
“Explorer status report:Travelling at cruise speed at [X,Y,Z]
Life units left:V, Fuel units left:W”
2. (Where explorer is landed.)
“Explorer status report:Stationary on planet surface at [3,1,3]
Life units left:3, Fuel units left:3”

X, Y, Z are the row, column and quadrant respectively of where the explorer is and V and W are the
current life and fuel of the explorer.

land:
1. (Where life is found on the planet)
“Tranquility base here - we've got a life!”
2. (Where no life is found on the planet)
“Explorer found no life as we know it at Sector:X:Y” where X and Y are the row and column denoting the
sector the explorer landed on a not visited planet attached to a yellow dwarf.

liftoff
1.
“Explorer has lifted off from planet at Sector:X:Y” where X and Y are the row and column denoting the
sector the explorer’s location.

abort:
1.
“Mission aborted. Try test(3,5,7,15,30)”

Game is over:
1.
“The game has ended. You can start a new game.”

15. Abstract State: Death Messages
Below are different death messages each entity may have:

EXPLORER:
1. (Out of fuel.) “Explorer got lost in space - out of fuel at Sector:X:Y” where X and Y are the row and
column where the explorer ran out of fuel.
2. (Death due to blackhole.) “Explorer got devoured by blackhole (id: -1) at Sector:3:3”
3. (Death due to asteroid.) “Explorer got destroyed by asteroid (id: Z) at Sector:X:Y” where X and Y are
the row and column where the explorer got hit by an asteroid and Z is the asteroid id.
4. (Death due to malevolent.) “Explorer got lost in space - out of life support at Sector:X:Y” where X and

27

Y are the row and column where the explorer ran out of life (due to malevolent).

BENIGN:
1. (Out of fuel.) “Benign got lost in space - out of fuel at Sector:X:Y” where X and Y are the row and
column where the benign ran out of fuel.
2. (Death due to blackhole.) “Benign got devoured by blackhole (id: -1) at Sector:3:3”
3. (Death due to asteroid.) “Benign got destroyed by asteroid (id: Z) at Sector:X:Y” where X and Y are the
row and column where the benign got hit by an asteroid and Z is the asteroid id.

MALEVOLENT:
1. (Out of fuel.) “Malevolent got lost in space - out of fuel at Sector:X:Y” where X and Y are the row and
column where the malevolent ran out of fuel.
2. (Death due to blackhole.) “Malevolent got devoured by blackhole (id: -1) at Sector:3:3”
3. (Death due to asteroid.) “Malevolent got destroyed by asteroid (id: Z) at Sector:X:Y” where X and Y
are the row and column where the malevolent got hit by an asteroid and Z is the asteroid id.
4. (Death due to benign.) “Malevolent got destroyed by benign (id: Z) at Sector:X:Y” where X and Y are
the row and column where the malevolent got destroyed by a benign and Z is the benign id.

JANITAUR:
1. (Out of fuel.) “Janitaur got lost in space - out of fuel at Sector:X:Y” where X and Y are the row and
column where the janitaur ran out of fuel.
2. (Death due to blackhole.) “Janitaur got devoured by blackhole (id: -1) at Sector:3:3”
3. (Death due to asteroid.) “Janitaur got destroyed by asteroid (id: Z) at Sector:X:Y” where X and Y are
the row and column where the janituar got hit by an asteroid and Z is the asteroid id.

ASTEROID:
1. (Death due to blackhole.) “Asteroid got devoured by blackhole (id: -1) at Sector:3:3”
2. (Death due to janitaur.) “Asteroid got imploded by janitaur (id: Z) at Sector:X:Y” where X and Y are the
row and column where the asteroid got destroyed by a janitaur and Z is the janitaur id.

PLANET:
1. (Death due to blackhole.) “Planet got devoured by blackhole (id: -1) at Sector:3:3”

16. Abstract State: Error Messages
 Below are possible error messages for the second line. Note that valid command message (like
landing) are not indicated here. They are listed in order of priority. X and Y can be 1..5

ABORT
1. "Negative on that request:no mission in progress."

LAND
1. "Negative on that request:no mission in progress."
2. "Negative on that request:already landed on a planet at Sector:X:Y"
3. "Negative on that request:no yellow dwarf at Sector:X:Y"
4. "Negative on that request:no planets at Sector:X:Y"
5. "Negative on that request:no unvisited attached planet at Sector:X:Y"

LIFTOFF
1. "Negative on that request:no mission in progress."

28

2. "Negative on that request:you are not on a planet at Sector:X:Y"

MOVE
1. "Negative on that request:no mission in progress."
2. "Negative on that request:you are currently landed at Sector:X:Y"
3. "Cannot transfer to new location as it is full."

PASS
1. "Negative on that request:no mission in progress."

PLAY
1. "To start a new mission, please abort the current one first."

STATUS
1. "Negative on that request:no mission in progress."

TEST
1. "To start a new mission, please abort the current one first."
2. "Thresholds should be non-decreasing order."

WORMHOLE
1. "Negative on that request:no mission in progress."
2. "Negative on that request:you are currently landed at Sector:X:Y"
3. "Explorer couldn't find wormhole at Sector:X:Y"

29

17. Appendix A. Algorithm/Randomness
1. DEFINITIONS
2. TYPES AND FUNCTIONS
3. BOARD CREATION
4. MAIN CONTROL

1. DEFINITIONS
There are two categories of entities: stationary and movable. We represent each
entity with an icon using a single character (e.g., 'O' for Blackhole).

Stationary

O: Blackhole
Y: Yellow Dwarf
*: Blue Giant
W: Wormhole

Movable:

E: Explorer

M: Malevolent
B: Benign
P: Planet
J: Janitaur
A: Asteroid

30

2. TYPES, VARIABLES AND FUNCTIONS

-- The game board contains 25 sectors (left to right, top to bottom):
type SECTOR = {(1, 1), (1, 2), ..., (1, 5), (2, 1), ..., (5, 5)}

-- Each sector has four quadrants (left to right):
type QUADRANT = 1..4

fun next_available_quad: FUN[SECTOR, QUADRANT]
 -- return the left-most next available quadrant
 -- require: input sector not full
fun has_stationary: FUN[SECTOR, BOOLEAN]
 -- has_stationary[s], where s is a sector,
 -- returns true if s has a stationary object
 -- false if not
fun is_full: FUN[SECTOR, BOOLEAN]
 -- each sector maps to a boolean
 -- true if each of the 4 quadrants has an entity
fun return_m_ent_low_high: FUN[SECTOR, SEQ[ENTITY]]
 -- return_m_ent_low_high[s], where s is a sector,
 -- returns a sequence of movables that are in s.
 -- Also, the returned sequence must be sorted from lowest to highest id

var next_stationary_id: INTEGER = -1
 -- id to be assigned to the next generated stationary
 -- initial value is -1 and is decremented when necessary

var next_movable_id: INTEGER = 0
 -- id to be assigned to the next generated movable
 -- initial value is 0 and is incremented when necessary

-- These 5 ranges are used to control the density of movables when the game is
–- started.
-- Refer to {SECTOR}.populate in the starter code.
var asteroid_threshold: 1..101
var janitaur_threshold: 1..101
var malevolent_threshold: 1..101
var benign_threshold: 1..101
var planet_threshold: 1..101

type ACTION = {pass, move, wormhole, land, liftoff}
 -- possible action of explorer

fun is_ENT_TYPE(ent:ENTITY):BOOLEAN
 --Replace ENT_TYPE with any entity type
 --Returns true if ent is of type ENT_TYPE
 --e.g., is_benign(ent) returns true if ent is a benign.

rchoose(low:INTEGER, high:INTEGER): INTEGER
 -– random choose (see class RANDOM_GENERATOR_ACCESS in starter code)
 require
 low < high
 low >= 0 and high > 0
 do
 Result:= random integer from the closed interval [low, high]
 end

31

3. BOARD CREATION

placement
 -- initial distribution of entities on the board (see SECTOR class in starter)
 require
 asteroid_threshold <= janitaur_threshold <= malevolent_threshold <=
 benign_threshold <= planet_threshold
 do
 create the Explorer in sector (1,1) with its id := 0 in its first quadrant
 next_movable_id := next_movable_id + 1
 create the Blackhole in sector (3,3) with its id := -1 in its first quadrant
 next_stationary_id := next_stationary_id - 1
 -- Stage 1: place movables
 across SECTOR (except Blackhole sector (3, 3)) as sector:
 n := rchoose(1,3) -- maximum number of movable entities at current sector
 across 1..n:
 value := rchoose(1,100)
 if value < asteroid_threshold then
 create an asteroid with id := next_movable_id in
 next_available_quad[sector]

 turns_left := rchoose(0,2) -- for this asteroid
 -- See Main Control for explanation of turns_left
 next_movable_id := next_movable_id + 1

 elseif value < janitaur_threshold then
 create a janitaur with id := next_movable_id in
 next_available_quad[sector]

 turns_left := rchoose(0,2) -- for this janitaur
 next_movable_id := next_movable_id + 1

 elseif value < malevolent_threshold then
 create a malevolent with id := next_movable_id in
 next_available_quad[sector]

 turns_left := rchoose(0,2) -- for this malevolent
 next_movable_id := next_movable_id + 1

 elseif value < benign_threshold then
 create a benign with id := next_movable_id in
 next_available_quad[sector]

 turns_left := rchoose(0,2) -- for this benign
 next_movable_id := next_movable_id + 1
 elseif value < planet_threshold then
 create a planet with id := next_movable_id in
 next_available_quad[sector]
 turns_left := rchoose(0,2) -- for this planet
 next_movable_id := next_movable_id + 1
 else
 -- value exceeds all entity thresholds
 -- No entity is created.
 end
 end
 end

32

 -- Stage 2: place 10 stationary entities
 from
 loop_counter := 1
 until
 loop_counter > 10
 loop

 row := rchoose(1,5)
 col := rchoose(1,5)
 -- Put a new stationary to sector (row, col) if it does not already
 –- contains a stationary and it is not full.

 if (not has_stationary[(row,col)]) and (not is_full[(row,col)]) then
 n := rchoose(1,3)
 if n = 1 then
 create a yellow dwarf with id := next_stationary_id in
 next_available_quad[(row,col)]

 elseif n = 2 then
 create a blue giant with id := next_stationary_id in
 next_available_quad[(row,col)]

 elseif n = 3 then
 create a wormhole with id := next_stationary_id in
 next_available_quad[(row,col)]

 end
 next_stationary_id := next_stationary_id - 1
 loop_counter := loop_counter + 1
 end
 end
 end

33

4.MAIN CONTROL

After any valid explorer action (pass, move, wormhole, land or liftoff), a turn will
occur. Being valid means that there are no error messages when the command (e.g.,
pass) is being used. For each movable entity, if their turns_left is 0, that entity
will act; otherwise their turns_left decreases by 1. The order in which movable
entities act is from the lowest to highest id. Dead entities are removed from the
board and will not act. When an explorer dies, its life is set to 0.

turn(action: ACTION)
 -- The explorer performs `action`, if valid, then other movables act.
 do
 if action causes an error (see Abstract State: Error Messages) then
 -- A turn does not occur because of an invalid `action`
 else
 act(action) --explorer performs an action (based on user input)
 check(explorer) –- ensures explorer is alive after moving
 -- After the explorer acts, the game may end either because
 –- 1) the explorer dies; or 2) it lands on a planet that supports life.
 -- For 1) the across loop below continues; For 2) skip the across loop.
 across movable entities (except explorer) by ids in ascending order as
 entity:
 –- When an entity dies, remove it from board
 -- If it is not an explorer, also remove entity from the movable
 –- entities being iterated over.
 if entity.turns_left = 0 then
 --special case for planet
 if is_planet(entity) and ∃star at entity.sector then
 entity.attached? := true
 if ∃ yellow dwarf at entity.sector then
 num := rchoose(1,2) -- num = 2 means life
 if num = 2 then
 entity.support_life? := true
 end
 end
 else
 if ∃ wormhole at entity.sector
 and (is_malevolent(entity) or is_benign(entity))
 then
 wormhole(entity)
 else
 movement(entity)
 end
 check(entity)
 if entity did not die then
 reproduce(entity)
 behave(entity)
 end
 end
 else
 entity.turns_left := entity.turns_left - 1
 end
 end
 end
 end

34

act(action:ACTION)
 --explorer performs an action (based on user input)
 do
 if action = pass then
 –- do nothing
 elseif action = move(dir) then
 -- let new_sector be the sector pointed to by `dir`
 place explorer in next_available_quad[new_sector]
 elseif action = wormhole then
 wormhole(explorer)
 elseif action = land then
 explorer.landed? := true –-see Table 5
 if planet being landed on supports life then
 –- game ends
 –- movables will not act
 end
 elseif action = liftoff then
 explorer.landed? := false
 end
 end

wormhole(ent:ENTITY)
 –- Explorer, malevolent and benign may use a wormhole to move.
 do
 if (is_explorer(ent) or is_malevolent(ent) or is_benign(ent)) then
 from
 added := false
 until
 added
 loop
 temp_row := rchoose(1,5)
 temp_column := rchoose(1,5)
 if (not is_full[(temp_row,temp_column)]) then
 place ent in next_available_quad[(temp_row,temp_column)]
 --where if wormhole to same location, quadrant of entity
 --using wormhole counts as an available quadrant
 added := true
 end
 end
 end
 end

movement(ent:ENTITY)
 --movement by movable entities to neighbouring sector
 do

if (is_malevolent(ent) or is_benign(ent) or is_planet(ent)
or is_asteroid(ent) or is_janitaur(ent)) then

 --1 means N, 2 means NE, 3 means E, 4 means SE, ... 8 means NW
 direction := rchoose(1,8)
 if not is_full(ent destination sector) then
 place ent in next_available_quad[(new sector)]
 end
 end
 end

35

check(ent:ENTITY)
 –- ensures entity is alive after moving
 do
 if (is_explorer(ent) or is_malevolent(ent) or is_benign(ent) or
 is_janitaur(ent)) and ent moved from one sector to another sector without
 using a wormhole for movement successfully then
 ent.fuel := fuel -1
 end

 if (is_explorer(ent) or is_malevolent(ent) or is_benign(ent) or
 is_janitaur(ent)) and ∃ star at ent.sector then

 ent.fuel := min(ent.fuel + star.luminosity, ent.max_fuel)
 end

 if (is_explorer(ent) or is_malevolent(ent) or is_benign(ent) or
 is_janitaur(ent)) and ent.fuel = 0 then

 ent dies
 end

 if ∃ blackhole at ent.sector then
 ent dies
 end
 end

reproduce(ent:ENTITY)
 –- some entities may reproduce as turns passes
 do
 if is_malevolent(ent) or is_benign(ent) or is_janitaur(ent) then
 if not is_full[ent.sector] and ent.actions_left_until_reproduction = 0
 then
 create an entity with the same type as ent
 with id := next_movable_id in next_available_quad[ent.sector]

 turns_left := rchoose(0,2)
 next_movable_id := next_movable_id + 1

 if is_janitaur(ent) then
 ent.actions_left_until_reproduction := 2
 else
 ent.actions_left_until_reproduction := 1
 end
 else
 if not ent.actions_left_until_reproduction = 0 then

 ent.actions_left_until_reproduction :=
 ent.actions_left_until_reproduction -1

 elseif is_full[ent.sector] then
 --will try to reproduce next time the entity acts
 end
 end
 end
 end

36

behave(ent:ENTITY)
 –- each type of movable entities (excluding explorer) has a unique behaviour when
 –- their turn occurs
 do
 if is_asteroid(ent) then
 across return_m_ent_low_high[ent.sector] as item
 if is_malevolent(item) or is_benign(item) or is_janitaur(item)

or is_explorer(item) then

 item dies
 end

ent.turns_left := rchoose(0,2)
 elseif is_janitaur(ent) then
 across return_m_ent_low_high[ent.sector] as item
 if is_asteroid(item) and ent.load < 2 then
 item dies
 load := load + 1
 end
 end
 –- Janitaur uses the wormhole to clear their load.
 if ∃ wormhole at ent.sector then
 ent.load := 0
 end

ent.turns_left := rchoose(0,2)
 elseif is_benign(ent) then
 across return_m_ent_low_high[ent.sector] as item
 if is_malevolent(item) then
 item dies
 end
 end

ent.turns_left := rchoose(0,2)
 elseif is_malevolent(ent) then
 if ∃ explorer at ent.sector and not ∃ benign at ent.sector and not
 explorer.landed then

 explorer.life := explorer.life - 1 --explorer dies if life = 0
 end

ent.turns_left := rchoose(0,2)
 elseif is_planet(ent) then
 if ∃ star at ent.sector then
 ent.attached? := true
 if ∃ yellow dwarf at ent.sector then
 num := rchoose(1,2)
 if num = 2 then
 ent.support_life? := true
 end
 end
 else
 ent.turns_left := rchoose(0, 2)
 end
 end
 end

37

18. Appendix B: Additional Debug Help - toggle_RNG_out
The oracle also supports an additional command called “toggle_RNG_out”. You DO NOT have to
implement this command. We will not test it, we promise. The purpose of this command is to help you
debug RNG (Random Number Generator, which is given to you in the starter project) usage. The
description of this command in the grammar is:

--toggle_RNG_out
 -- Toggles the RNG out flag.
 -- When enabled, if any commands result in the board being output,
 -- then additional information about the RNG usage is appended
 -- at the very end.
 -- There will be a list with entities in the form of (W->X:[Y,Z]).
 -- If the RNG is not used that turn, then "none" will
 -- be appended for that section.
 -- The order of the tuples (left-to-right then up-to-down)
 -- determine the order of usage of the RNG.
 -- W represents the entity using the RNG (where it can be
 -- in the form of any movable entity's alphabet or "G"
 -- denoting the galaxy).
 -- The RNG generates a number from Y to Z and X is the
 -- actual value it generated.

This command, when used, does not count as a turn. What it does though is that it toggles a flag which we
will call RNG_out. The output after using this command will indicate whether this flag is set to true or
false. It can be used anytime. When the flag is set to true, whenever a command is used that causes the
board to be displayed, at the very end, additional information about the usages of the RNG that turn will
also be displayed. (Nothing different happens if the flag is set to false.) The form of the additional
information is in (W→X:[Y,Z]). W denotes which entity used the RNG by their alphabet representation.
W can be all movable entities or “G” which stand for galaxy and is only used when setting up the board
initially. If an explorer uses a wormhole, “W” would be “E” when finding the coordinates for the
wormhole. If a planet’s turn is resetting, “W” would be “P”. Y and Z denotes the range the RNG is being
asked to generate a number for; from Y to Z inclusive. X is the actual number generated.

38

19. Appendix C. Revisions

